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Algunas de las ideas que llevaron a la formulación de la conjetura de Poincaré.

1 Objetivo

Desarrollar un recorrido por algunas de las ideas expuestas en el Analysis Situs [1] de Henri
Poincaré; empezando por los complejos simpliciales y su importancia como herramienta
analítica para hacer triangulaciones a estructuras complejas y poder descomponerlas en objetos
conocidos, la Homología y el grupo fundamental de homotopía entendidos como herramien-
tas sintéticas que integran el álgebra y la topología, hasta la aplicación de estas herramientas
para caracterizar esferas llegando a las obstrucciones fundamentales y el contraejemplo im-
portante de la esfera de homología que condujo naturalmente a la formulación de la conjetura
de Poincaré.

2 Introducción

El estudio de la continuidad nos lleva a los conjuntos abiertos, cuyo ambiente natural son los
espacios topológicos; el problema de entender la continuidad implica entonces poder carac-
terizar y clasificar espacios. Felix Klein en su programa Erlanger define la topología como el
estudio de aquellos invariantes de las transformaciones continuas de puntos [2]. Es entonces
importante encontrar nuevos invariantes que nos permitan tener cada vez más poder de clasifi-
cación y mayor entendimiento de las características de un espacio. Este trabajo es una primera
lectura y recopilación de algunas ideas subyacentes a creaciones de Henri Poincaré.
La primera pregunta que indagaremos es ¿De qué forma podemos detectar agujeros en un espa-
cio?, una vez estudiadas herramientas que permiten caracterizar agujeros es natural preguntar
¿Son lo suficientemente poderosas estas herramientas para detectar cuando no hay agujeros?
¿Logran detectar cuando un espacio es homeomorfo a una esfera? o ¿Qué condiciones son
necesarias y suficientes para que ello ocurra?

Estas son algunas de las preguntas con las que se encontró Henri Poincaré mientras desar-
rollaba su Analysis situs, sin embargo como dice John Stilwell en su traducción [1]:

”Quizá el más profundo de los problemas abiertos que nos dejó inició siendo una
afirmación que parecía trivial”.

Este fué el caso de la famosa conjetura de Poincaré.
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3 Descomponiendo el espacio

¿Cuál la figura geométrica más simple que podemos construir en Rn que a su vez sea lo
suficientemente compleja para exhibir su naturaleza?

Para resolver esta pregunta se debe especificar de qué forma es simple un espacio y qué significa
exhibir la naturaleza del espacio euclidiano en el que vive. Una noción analítica de simplicidad
es que un objeto se pueda descomponer fácilmente en partes y que aquellas partes sean objetos
ya conocidos o simples en este mismo sentido, esto es lo que buscaremos. Además se entenderá
que un espacio captura o exhibe la naturaleza del espacio euclidiano en el que vive desde que
contenga una copia homeomorfa a él (el símbolo ∼= denotará espacios homeomorfos).

3.1 Una primera elección

Veamos un primer intento de elegir un espacio con las características deseadas, algunas ideas
de esta sección fueron motivadas por [3].
Para el espacio 0-dimensional solo se puede elegir un punto x0.
Para R el punto vuelve a ser una opción, pero este no captura su naturaleza, en cambio un
intervalo D1 = {x ∈ R; |x− 0| ≤ 1} contiene en su interior una copia topológica de R, es decir
Int(D1) ∼= R , tenemos entonces un buen candidato para nuestro propósito. en R2 podemos
pensar análogamente en un disco cerrado D2 = {x ∈ R2; ||x− 0|| ≤ 1} pues Int(D2) ∼= R2. De
esta forma se tiene un primer conjunto de estructuras simples formado por los discos cerrados
n-dimensionales, se elige r = 1 por simplicidad.

¿Qué sucede en la frontera de estas estructuras?

Note que ∂D2 = S1 = {x ∈ R2; ||x − 0|| = 1} y S1 ≇ D1, luego, la frontera de un disco no
resulta ser otro disco sino una esfera en dimensión menor. [4]
Sin embargo, podemos pensar en la frontera de D2, es decir, la esfera S1 como una unión de
varios espacios (no disyuntos) homeomorfos a discos D1, por ejemplo, podríamos tomar X1, X2

tales que X1 ∪X2 = S1 de la siguiente forma.

X1 ∪X2∂D2 = S1 D1 ∪D1

Analogamente:
Podemos pensar en la frontera de D3, es decir, la esfera S2 como la unión de varios espacios
homeomorfos a discos D2, por ejemplo, podríamos tomar X1, X2 tales que X1 ∪X2 = D3 de la
siguiente manera:
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∂D3 = S2 X1 ∪X2 D2 ∪D2

Así, vemos que la frontera de Dn, es decir, la esfera Sn−1 se puede construir como la unión
de varios espacios X1, X2, . . . , Xm homeomorfos a discos Dn−1.

Sin embargo la elección de los X1, X2, . . . , Xm resulta arbitraria, hay muchas elecciones
posibles que tienen este mismo resultado. La necesidad de hacer esta elección arbitraria es
una limitación que lleva a buscar una figura distinta donde no haya tal situación a la hora de
descomponer su frontera, se genera la siguietne pregunta:

¿Existe una figura/espacio n-dimensional con la ventaja de que su frontera se pueda
construir de forma natural con figuras de su mismo tipo en una dimensión menor?

Se tendrá respuesta a este interrogante en la sección 4.3.

3.2 Combinaciones convexas

Podemos caracterizar completamente un intervalo [x1, x2] ⊂ R por sus extremos x1, x2 y sabe-
mos que cada uno de los puntos que contiene puede ser escrito como una parametrización
x1 + t(x2 − x1) o (1− t)x1 + tx2, donde t ≤ 1.
El anterior hecho motiva a definir la combinación convexa del conjunto X = {x1, x2, . . . , xk} ⊂
Rn como los vectores x ∈ Rn de la forma x = t1x1+t2x2+. . .+tkxk donde cada xi ∈ X, 0 ≤ ti ≤ 1

y
∑k

m=1 tm = 1.

3.3 Clausura convexa

El conjunto de todas las combinaciones convexas de X ⊂ Rn se llama clausura convexa de X y
se denota co(X).
Ejemplos:

• Si X = {x1}, co(X) = {x1}.

• Si X = {x1, x2}, co(X) = {x ∈ R2|x = t1x1 + t2x2, 0 ≤ ti ≤ 1, t1 + t2 = 1} = [x1, x2].

• En geometría euclidiana, los conjuntos convexos son aquellos en que los segmentos entre
dos puntos cualesquiera del conjunto están contenidos en el conjunto. Un conjunto es
convexo si y solo si es igual a su clausura convexa.

• Si X = {x1, x2, x3}, co(X) = {x ∈ R2|x = t1x1 + t2x2 + t3x3, 0 ≤ ti ≤ 1, t1 + t2 + t3 = 1}.

3.4 Símplices

Note que la clausura convexa de un punto corresponde a un punto, además podemos ver que
co(x1, x2) ∼= D1 y dados x1, x2, x3 no colineales tendremos co(x1, x2, x3) ∼= D2.
El conjunto ∆n = {(t0, t1, . . . , tn) ∈ Rn+1|

∑n
m=1 tm = 1} se llama símplice n-dimensional.
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Dimensión símplice representación
0 co(x1)

1 co(x1, x2)
b bx0 x1

2 co(x1, x2, x3) b b

b

x1 x2

x3

3 co(x1, x2, x3, x4)

x1

x2

x3

x4

4 co(x1, x2, x3, x4, x5) ¿?
. . . . . . . . .

La frontera de un n-simplice está constituida por n-1 símplices y en este caso, a diferencia
de los discos antes discutidos, hay una elección natural para hacer esta descomposición; Los
símplices son la figura geométrica que se buscaba.
En un símplice una n-cara es un subconjunto de los vertices con orden n+1. Dos símplices
∆n

1 ,∆
n
2 se dicen bien situados si ∆n

1 ∩ ∆n
2 = ∅ o ∆n

1 ∩ ∆n
2 = ∆n−1 tal que ∆n−1 es cara de

ambos simplices.
Los símplices se usarán para ”triangular” espacios, las triangulaciones con simplices se llaman
complejos simpliciales y son definidas a continuación.

3.5 Complejos simpliciales

Un complejo simplicial es un conjunto finito de simplices K = {∆n
1 ,∆

n
2 ...,∆

n
k} que cumple las

siguientes condiciones [5] :

• Si ∆n
i ,∆

n
j ∈ K entonces ∆n

i ,∆
n
j están bien situados.

• Para todo ∆n
i ∈ K y dada α una cara de ∆n

i , se tiene α ∈ K.

4 Homología

Esta sección pretende revisar la definición que presenta Poincaré de Homología en el quinto
capítulo del Analysis situs.
Una n-Variedad es un espacio donde para cada punto existe una vecindad homeomorfa a Rn,
esta es la definición moderna, sin embargo Poincaré introduce dos definiciones distintas para
este concepto, La siguiente es la definición de Homología presentada por Poincaré:

Sean V , Wvariedades de dimensión p,q respectivamente tales que W ⊂ V . Si la
frontera de W está compuesta por λ variedades de dimensión q− 1 entonces se dice
que:
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V1 + V2 + . . .+ Vλ ∼ 0

Poincaré define de forma más general este mismo concepto teniendo en cuenta la orientación de
la variedad, de la siguiente manera:

K1V1 +K2V2 = K3V3 +K4V4 ∼ 0

Esto es, existe en V una variedad W de dimensión q cuya frontera consta de K1

”copias” de la variedad V1, K2 ”copias” de la variedad V2, K3 ”copias opuestamente
orientadas” de la variedad V3 y K1 ”copias opuestamente orientadas” de la variedad
V1.

El concepto más importante para la homología es el de borde o Frontera. Se logra captar con
la homología la idea de componer un borde a partir de ”sub-variedades” en alguna orientación.

5 Números de Betti, conectividades en distintas dimensiones

Esta sección pretende sin-
tetizar las ideas expuestas
por Poincaré acerca de los
números de Betti Pm estu-
diados en el sexto capítulo del
analysis situs.

Son aquellos que caracter-
izan la conectividad m-
dimensional de una variedad.

Poincaré descubre un teo-
rema de dualidad: para una
n-variedad se cumple que
Pm = Pn−m.

La sucesión de números de
Betti brinda información de la
relación de una variedad con
los posibles agujeros o vacíos
en distintas dimensiones.

El número de Betti Pm Puede
entenderse como el número
de variedades de dimensión
m se necesita remover de V

para ”desconectarla”.
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6 Grupo fundamental

Se pretende sintetizar la perspectiva actual sobre el grupo fundamental.
El grupo fundamental es una nueva herramienta que permite detectar agujeros y avanzar en la
caracterización de espacios.

Un ciclo es una función
continua γ : [0, 1] → X tal que
γ(0) = x0 = γ(1).

El grupo fundamental de X
con base en x0 denotado
π1(X,x0) tiene como elemen-
tos los ”tipos de homotopía de
ciclos” que son las clases de
equivalencia resultantes de el
conjunto de ciclos con base en
x0 y la relación de homotopía.

La operación del grupo es la
concatenación de loops:
γ0 · γ1 : [0, 1] → X

γ0 · γ1 =

{
γ0 si 0 ≤ t ≤ 1

2

γ1 si 1
2 ≤ t ≤ 1

(1)
La palabra ”iteración” en

la imagen se refiere a que bajo
la relación de homotopía cada
vez que un ciclo vuelve a x0

se vuelve un tipo de ciclo dis-
tinto, es decir, a cada ”vuelta”
se tiene un nuevo elemento en
el grupo; la orientación de los
ciclos termina de generar Z.

Poincaré introdujo el Grupo Fundamental como un nuevo invariante para analizar propiedades
topológicas de los espacios, es importante destacar la eficacia de emplear conceptos discretos
del álgebra abstracta para abordar aspectos continuos de la topología. En el grupo fun-
damental la atención se centra en comprender características del continuo mediante el análisis
discreto. Esta estrategia evoca nociones de Brouwer, donde lo discreto se conceptualiza como
cortes en lo continuo, distanciándose de la idea abrupta de que el continuo surge como una
acumulación violenta de elementos discretos.
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7 Caracterización de esferas

Una primera aplicación de la homología y el grupo fundamental es intentar detectar esferas, esto
es, ver si hay una caracterización de las esferas usando estos nuevos invariantes para distinguir
cuando un espacio es homeomorfo a una esfera. Luego de introducir las triangulaciones con
símplices y la homología, Poincaré hizo la siguiente conjetura en el segundo anexo al Analysis
situs:

”Una variedad cerrada con homología trivial es homeomorfa a una esfera”. Lo anterior resultó
ser falso.

7.1 La esfera de homología de Poincaré

En el quinto anexo del analysis situs Poincaré descubre la esfera de homología; un claro con-
traejemplo para su anterior conjetura (La homología trivial no detecta a la 3-esfera). [6] Hay
al menos 8 formas distintas de construir la esfera de Homología, pueden ser consultadas en [7].
Resacataremos la idea esencial: Poincaré se preguntó ¿Pueden dos variedades tener la misma
sucesión de numeros de Betti pero tener un grupo fundamental distinto? La esfera de Homología
es una 3 variedad que resulta tener los mismos números de Betti que la 3- esfera, homología
trivial pero grupo fundamental no trivial. [8]

Figure 1: Diagrama de Heegard de la esfera de homología. Creditos: Henri Poincaré Manifold
Atlas (GFDL 1.3)

Posteriormente, ya que la homología no logra detectar a la 3-esfera, Poincaré se cuestiona
lo que en un principio asumió: ¿podrán la homotopía y el grupo funamental hacerlo?

8 Conjetura de Poincaré

En el quinto suplemento Poincaré llegó al problema definitivo, conjeturando:

”Una 3-variedad cerrada con grupo fundamental trivial es homeomorfa a la 3-esfera”.

Aquí nació su famosa conjetura, probada finalmente más de un siglo después por Grigori Perel-
man en 2002. Esta conjetura necesitó el tiempo suficiente para la creación de herramientas
poderosas como el flujo de Ricci que permitieran atacarla definitivamente.
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9 Diagrama de la Topología algebraica como mixto

En el siguiente diagrama se representan algunos conceptos epistemológicos de la topología al-
gebraica como son los distintos niveles de horizonte de Desanti, algunos ejemplos de puntos
ciegos y visagras horizonte, así como el surgimiento de virtualidades de Chatelet, en este caso
con el grupo fundamental. Se analiza la topología algebraica como un gran mixto de Lautman.
El diagrama evidencia las siguientes dos frases de Desanti:

”todo dominio de estratificación despliega un campo específico de posibles”.
”La matemática produce ella misma su propio suelo, no existe otro suelo que aquel
que ella produce y reproduce sin cesar”.

Se usan los símbolos de posible ♢ y necesario □ haciendo referencia a los modelos de Kripke,
que codifican la temporalidad y se intenta representar que en cada dominio de posibles también
existen algunos conceptos necesarios que interactúan en todo el futuro de cada nivel.
Cuando se rompen los necesarios se salta de nivel, ya sea a otro preexistente o a un nuevo
mixto.
La acumulación de posibles puede generar necesarios, como el caso de la acumulación de
abiertos lleva a la creación de los espacios topológicos, representados en el primer estrato.
Hay dos obstrucciones fundamentales en los niveles intermedios, estas son respecto a la
homología trivial (y la esfera de homología) y el grupo fundamental trivial (y la conjetura
de Poincaré), como se mencionó anteriormente, son obstrucciones frente a la detección esferas.
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10 Aspectos analíticos, sintéticos y Horóticos de las ideas tra-
bajadas

• Los complejos simpliciales son una herramienta enmarcable en la filosofía analítica de las
matemáticas por su relación con la descomposición y el conocimiento de los objetos a
partir de partes que los componen.

• Los grupos de Homología y Homotopía son herramientas sintéticas que surgen como el
mixto entre álgebra y topología dando una nueva herramienta para caracterización de
espacios topológicos.

• La esfera de homología de Poincaré surge como un contraejemplo esclarecedor para ver las
limitaciones del grupo de homotopía, demarcando una parte del borde que tiene el grupo
fundamental como herramienta para caracterizar espacios.

• La homología es un concepto Horótico, pues estudia cómo está compuesto el bordes de
una variedad, aunque a la vez tiene un carácter analítico, pues al estudiar el borde lo
descompone en sub-variedades de dimensión menor.

• La sucesión de numeros de Betti es un concepto sintético, pues cada Pm recopila la relación
entre una variedad V y su conectividad con las posibles variedades de dimensión m.

• Los intentos de detección y caracterización de esferas ayudaron a demarcar un borde
importante para el alcance de la homología y llevaron naturalmente a la formulación de
la conjetura de Poincaré.

Es importante ver que no es simplemente la matemática la que cuenta con varios niveles de
estratificación, el pensamiento matemático también es así, con las anteriores viñetas se
ilustra cómo las ideas de Poincaré no son solo analíticas, ni solo sintéticas, quizá su poder se
encuentra en que son un gran mixto de los diferentes modos de conocer, las diferentes formas
de crear y conectar ideas.

A pesar de que se deben usar tanto el análisis, la síntesis y la horósis para estudiar las
ideas de Poincaré, hay una tendencia sintética en conectar ramas distíntas para crear nuevos
objetos ideales y como en el caso de los números de Betti, encontrar las relaciones de los objetos
con su entorno.
El nacimiento del mixto de la topología algebraica se debe en gran medida a la idea sintética
de entender el continuo de la topología a partir de lo discreto de la teoría de grupos.

11 Pregunta inquietante

Hemos ejemplificado la topología algebraica en el diagrama anterior usando muchos conceptos
de la filosofía matemática de Lautman, Desantí y Chatelet. Luego llegamos a la conclusión
de que el pensamiento matemático también está estratificado en distintos modos de operar, ya
sean analíticos, sintéticos u horóticos.
Vale la pena preguntarse si los distintos estilos matemáticos de pensamiento se pueden enmarcar
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en un diagrama similar al expuesto, pero ya no de niveles de horizonte matemáticos sino con
niveles de horizonte epistemológicos. Quizá se vean relaciones interesantes como que al romper
los necesarios del análisis se salte a la síntesis o quizá al acumular suficientes posibles tanto del
análisis como de la síntesis se salte a la horósis.
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